Energy Conversion - Exam II
School of Engineering - Dep. of Industrial \& Mechanical Eng.

Name:	Soluto Key
Date:	Tuesday, May $21^{\mathrm{s}} 2013 ; 06: 00 \mathrm{PM}$
Location:	ENG Attic
Instructor:	Dr. Wassim Habchi
Notes:	No documents allowed
Value:	25% of Total Grade
Time:	2 hours

$$
\left(\frac{}{100}\right)
$$

Problem I (25 points)
Water is the working fluid in an ideal Rankine cycle. Superheated vapor enters the turbine at $8 \mathrm{MPa}, 480^{\circ} \mathrm{C}$. The condenser pressure is 8 kPa . The net power output of the cycle is 100 MW.
a) Sketch a T-s diagram for this cycle (5 points).
b) Determine the rate of heat transfer to the working fluid passing through the steam generator, in kW ($\mathbf{1 0}$ points).
c) Determine the thermal efficiency of the cycle (5 points).
d) Determine the mass flow rate of condenser cooling water, in kg / h, if the cooling water enters the condenser at $15^{\circ} \mathrm{C}$ and exits at $35^{\circ} \mathrm{C}$ with negligible pressure change (5 points).

Solution:
a)

$$
\begin{aligned}
& \dot{Q}_{u}=? \\
& \dot{Q}_{H}=?
\end{aligned}
$$

$$
\text { - } h_{1}=h_{f \rho} \mathrm{kkp}=173.362 \mathrm{~kJ} / \mathrm{kg} \quad v_{1}=v_{g} \rho 8 \mathrm{kPe}=0.0010084 \mathrm{~mm}^{3}
$$

$$
h_{2} \simeq h_{1}+v_{1}\left(P_{2}-P_{1}\right)
$$

$$
=173.362+0.00+6084 \times(8000-8)=181.62 \mathrm{~kJ} / \mathrm{kg}_{\mathrm{g}}
$$

(3):

$$
\left.\begin{array}{l}
P_{3}=84 \mathrm{Pe} \\
T_{3}=480^{\circ} \mathrm{C}
\end{array}\right\} \rightarrow \begin{aligned}
& h_{3}=3369.02 \mathrm{KJ} / \mathrm{kg} \\
& s_{3}=6.65912 \mathrm{~kJ} \mid \mathrm{Kg} \cdot \mathrm{~K}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ((4): } P_{4}=8 \mathrm{KPa} \\
& S_{4}=S_{3}=6.65912 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \longrightarrow \quad S_{f}<S_{4}<S_{8} \\
& \text { sive } s_{f}=0.59088 \mathrm{KJVghK} \\
& s_{z}=8.22584 \mathrm{Kj} / \mathrm{kgK} \\
& \Rightarrow x_{4}=\frac{S_{4}-S_{f}}{S_{g}-s_{f}}=\frac{6.65912-0.59088}{8.22386-0.53088}=0.73438 \\
& \Rightarrow h_{4}=h_{f}+x_{4} h_{f g}=173.362+0.79638 \times 2402.66=\begin{array}{r}
2081.987 \\
\mathrm{~K}_{J} / \mathrm{kgg}_{g}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{\omega}_{\text {net, st }}=100 \pi \omega=\dot{m}\left(\omega_{r_{6}}-\omega_{p-p}\right) \\
&=\dot{m}\left(h_{3}-h_{4}-h_{2}+h_{1}\right) \\
& \Rightarrow \dot{m}=\frac{100 \times 10^{3}}{3349.02-2081.987-181.42+173.362}=79.43 \mathrm{~kg} / \mathrm{s} \\
& \Rightarrow \dot{Q}_{H}=79.43(3349.02-181.42)=251602.468 \mathrm{k} \mathrm{\omega}
\end{aligned}
$$

$\Rightarrow \eta_{\text {th }}=\frac{\dot{\omega}_{\text {metat }}}{\dot{Q}_{\text {Ht }}}=\frac{100 \times 10^{3}}{251602.468}=0.39745 \simeq 39.75 \%$

1) $\dot{m}_{\omega} c_{\omega} \Delta T_{\omega}=\dot{Q}_{L}=\dot{m}\left(h_{4}-h_{1}\right)=79.43(2081.387-173.362)$

$$
\begin{aligned}
&=151602.084 \mathrm{k} \mathrm{\omega} \\
& \dot{m}_{\omega}=\frac{151602.084}{c_{\omega} \Delta T_{\omega}}=\frac{151602.084}{4.18 \times(35-15)}=1813.422 \mathrm{~kg} / \mathrm{s} \\
& \mathrm{~A}-3
\end{aligned} \quad=6528319.396 \mathrm{~kg} / \mathrm{h} .2 .
$$

Problem II (25 points)
A vapor-compression refrigeration system circulates Refrigerant $\mathrm{R}-134 \mathrm{a}$ at a rate of $6 \mathrm{~kg} / \mathrm{min}$. The refrigerant enters the compressor at $-10^{\circ} \mathrm{C}, 140 \mathrm{kPa}$, and exits at 700 kPa . The isentropic compressor efficiency is 67%. There are no appreciable pressure drops as the refrigerant flows through the condenser and evaporator. The refrigerant leaves the condenser at 700 kPa ,
as set.lif.
a) Sketch a T-s diagram of this cycle (5 points).
b) Determine the coefficient of performance of this refrigerator ($\mathbf{1 0}$ points).
c) Determine the refrigerating capacity, in tons and in Btu/h ($\mathbf{1 0}$ points).

Solution:
©(1):

$$
\left.\begin{array}{l}
T_{1}=-10^{\circ} \mathrm{C} \\
P_{1}=160 \mathrm{KPe}
\end{array}\right] \rightarrow \begin{aligned}
& \text { Sic } \quad P<P_{\text {set }} \Rightarrow \text { Superheated Vapor } \\
& h_{1}=246.36 \mathrm{KJ} / \mathrm{Kg}
\end{aligned}
$$

(25) :

$$
\begin{aligned}
& \left.\begin{array}{l}
P_{2 s}=700 \mathrm{KPe} \\
s_{2 s}=s_{1}=0.8724_{1} \mathrm{KJ} \mid \mathrm{Kg} \cdot \mathrm{~K}
\end{array}\right] \rightarrow h_{2}=\frac{\omega_{s}}{\omega_{a}}=\frac{h_{2 s}-h_{1}}{h_{22}-h_{1}} \\
& \Rightarrow h_{2 a}=h_{1}+\frac{h_{25}-h_{1}}{\eta_{c}}=246.36+\frac{281.2-246.36}{0.67}=298.36 \mathrm{~kJ}
\end{aligned}
$$

2(3): $\left.\begin{array}{l}P_{3}=700 \mathrm{KPe} \\ \text { sat. } 4 \% .\end{array}\right] \quad h_{3}=h_{f}$ P700 $\mathrm{KP}=88.82 \mathrm{KJ} / \mathrm{hg}$.

$$
h_{4}=h_{3}=88.82 \mathrm{~kJ} / \mathrm{kg}
$$

2)

b)

$$
\begin{aligned}
& C O P_{R}=\frac{q_{L}}{\omega_{i}}=\frac{h_{1}-h_{4}}{h_{2 a}-h_{1}}=\frac{246.36-88.82}{238.36-246.36} \\
\Rightarrow & C O P_{R}=3.03
\end{aligned}
$$

c)

$$
\dot{Q}_{L}=\text { in }\left(h_{1}-h_{4}\right)=\frac{6}{60} \times(246.36-88.82)=15.754 \mathrm{~kW}
$$

But 1 to refrifecti $=211 \mathrm{~kg} / \mathrm{min}=200 \mathrm{Btu} / \mathrm{min}$

$$
\dot{Q}_{L}=6 \times(246.36-88.82)=945.24 \mathrm{~kJ} / \mathrm{min}
$$

$$
\begin{aligned}
\Rightarrow \dot{Q}_{L} & =\frac{345.24}{211}=4.48 \text { tons } \\
n \dot{Q}_{L} & =4.48 \times 200 \text { Btu/mi } \\
& =4.4 .8 \times 200 \times 60 \text { Btu/h } \\
& =53760 \text { Btu/h }
\end{aligned}
$$

Problem III (20 points)
An ideal reheat Rankine cycle with water as the working fluid operates the inlet of the highpressure turbine at 8000 kPa and $450^{\circ} \mathrm{C}$; the inlet of the low-pressure turbine at 500 kPa and $500^{\circ} \mathrm{C}$; and the condenser at 10 kPa .
a) Sketch a T-s diagram of this cycle ($\mathbf{5}$ points).
b) Determine the mass flow rate of water through the cycle if the net power output of the system is 5MW ($\mathbf{1 0}$ points).
c) Determine the thermal efficiency of the cycle ($\mathbf{5}$ points).

Solution:

$$
\begin{aligned}
\cdot h_{1} & =h_{f} e 10 \mathrm{KP} P_{2}=191.81 \mathrm{KJ} / \mathrm{Kg} . \quad \text { ad } v_{1}=v_{f} @ 10 \mathrm{KP}=0.001010 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \\
\cdot h_{2} & =h_{1}+v_{1}\left(P_{2}-P_{1}\right) \\
& =191.81+0.001010(8000-10)=199.88 \mathrm{KJ} / \mathrm{kg}
\end{aligned}
$$

- $\overbrace{}^{3}$):

$$
\begin{aligned}
& P_{3}=8000 \mathrm{KPe} \\
& T_{3}=450^{\circ} \mathrm{C}
\end{aligned} \longrightarrow \begin{aligned}
& h_{3}=3273.3 \mathrm{KJ} / \mathrm{kg} \\
& S_{3}=6.5579 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{aligned}
$$

- ©(4):

$$
\begin{aligned}
& P_{4}=500 \mathrm{KPe} \\
& S_{4}=S_{3}=6.5579 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}\left[\rightarrow \quad \mathrm{Sf}_{f}<S_{4}<S_{f}\right. \\
& \Rightarrow \text { Sot. Lib. vol. Mixture } \\
& x_{4}=\frac{S_{4}-S_{f}}{S_{8 g}}=\frac{6.5579-1.8606}{4.9603}=0.967 \\
& \Rightarrow h_{4}=h_{f}+x_{4} h_{f f}=640.09+0.947 \times 2108=2636.366 \mathrm{~kJ} / \mathrm{kg}_{g}
\end{aligned}
$$

Q(5):

$$
\begin{aligned}
& P_{s}=500 \mathrm{KPc} \\
& T_{5}=500{ }^{\circ} \mathrm{C}
\end{aligned} \rightarrow \begin{aligned}
& h_{s}=3484.5 \mathrm{KJ} / \mathrm{Kg} \\
& S_{5}=8.0893 \mathrm{KJ} / \mathrm{Kg} \mathrm{~K}
\end{aligned}
$$

(6): $P_{6}=10 \mathrm{KP}$

$$
\begin{aligned}
r_{6} & =l_{0 K P} \\
s_{6} & =S_{5}=8.0893 \mathrm{~K} / \mathrm{Kg} \cdot K \rightarrow \quad S_{f}<S_{6}<s_{g} \\
x_{6} & =\frac{S_{6}-S_{f}}{S_{88}}=\frac{8.0893-0.6492}{7.4996}=0.992 \\
& \Rightarrow S_{6}=S_{f}+x_{6} h_{68}=191.81+0.992 \times 2392.1=2564.77 \mathrm{~K}_{\mathrm{j} / \mathrm{kg}}
\end{aligned}
$$

a)

b) $\dot{\omega}_{\text {mat }}^{\text {got }}$ $=5 \mathrm{M} \mathrm{\omega}=5000 \mathrm{~K} \mathrm{\omega}$

$$
\begin{aligned}
\text { but } \dot{\omega}_{\text {ret, at }} & =\dot{\omega}_{\text {tabs }}-\dot{\omega}_{p \sim p} \\
& =\dot{\omega}_{t_{1, ~}}+\dot{\omega}_{t, I I}-\dot{\omega}_{p-p} \\
& =\dot{m}\left[\left(h_{3}-h_{4}\right)+\left(h_{5}-h_{6}\right)-\left(h_{2}-h_{1}\right)\right] \\
\Rightarrow \dot{m} & =\frac{\dot{\omega}_{n_{1}-1, s t}}{h_{3}-h_{4}+h_{s}-h_{6}-h_{2}+h_{1}}=\frac{5000}{3273.3-2636.366+3484.5-2564.77-19988}+131.81 \\
\dot{m} & =3.23 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

$2)$

$$
\begin{aligned}
& \eta_{\text {th }}=\frac{\omega_{\text {net, ot }}}{Q_{i}}=\frac{5000}{m\left(h_{3}-h_{2}+h_{5}-h_{4}\right)}=\frac{5000}{3.23(3273.3-199.88+3484.5)-2636.366)} \\
& \Rightarrow \eta_{\text {th }}=0.3947 \underline{29.5 \%}
\end{aligned}
$$

Problem IV ($\mathbf{3 0}$ points)
Consider a two-stage cascade refrigeration system where both stages use refrigerant R-134a as the working fluid. The upper cycle operates between the pressure limits of 1.0 MPa and 0.4 MPa while the lower cycle operates between the pressure limits of 0.5 MPa and 0.1 MPa . If the mass flow rate of refrigerant through the upper cycle is $1 \mathrm{~kg} / \mathrm{s}$ and the isentropic efficiency of both compressors is 90% :
a) Sketch a T-s diagram of this cycle ($\mathbf{5}$ points).
b) Determine the mass flow rate of refrigerant through the lower cycle ($\mathbf{1 0}$ points).
c) Determine the rate of heat removal from the refrigerated space (5 points).
d) Determine the total power input for the compressors (5 points).
e) Determine the Coefficient Of Performance of this refrigeration machine (5 points).

b) $\cdot h_{1}=h g e 0.1 \mathrm{MPe}=234.44 \mathrm{~K} \mathrm{~K} / \mathrm{Kg} \quad$ ad $s_{1}=5$ geo. $1 \mathrm{mPe}=0.95183 \mathrm{KJ} / \mathrm{Kg} \cdot \mathrm{K}$

$$
\text { - ((25): } \left.\begin{aligned}
P_{2 s} & =0.54 \mathrm{~Pa} \\
s_{25} & =s_{1}=0.95183 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{aligned} \right\rvert\, \rightarrow h_{25}=267.5 \mathrm{KJ} / \mathrm{Kg}
$$

but $\eta_{c}=0.9=\frac{\omega_{s}}{\omega_{2}}=\frac{h_{2 s}-h_{1}}{h_{22}-h_{1}}$

$$
\Rightarrow h_{2 a}=\frac{h_{25}-h_{1}}{0.3}+h_{1}=\frac{267.5-234.44}{0.9}+234.44=271.17 \mathrm{~kJ} / \mathrm{Kg}
$$

$$
\begin{aligned}
&-h_{3}=h_{\text {ge o. sr pe }}=73.33 \\
& \cdot h_{4}=h_{3}=73.33 \mathrm{~kJ} / \mathrm{kg} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } h_{s}=h_{g} \odot 0.4 \pi P_{2}=255.55 \mathrm{~K} / \mathrm{kg} \quad \& \quad S_{5}=S_{g} 0.4 \pi \mathrm{P}_{0}=0.92691 \mathrm{KJ} / \mathrm{kg} . \mathrm{K} \\
& \text { - (6) }, P_{s s}=M P_{2} \\
& \left.\begin{array}{l}
P_{65}=1 \mathrm{MPL} \\
S_{6 S}=S_{5}=0.92691 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{array}\right\} \rightarrow h_{6 S}=274.58 \mathrm{KJ} / \mathrm{Kg} \\
& \text { and } h_{6 a}=\frac{h_{65}-h_{5}}{0.3}+h_{5}=\frac{274.58-255.55}{0.9}+255.55=276.69 \mathrm{~K}_{\mathrm{J}} / \mathrm{Kg}_{0} \\
& h_{7}=h_{f} \rho_{\text {IMP }}=107.32 \mathrm{KJ} / \mathrm{Kg} \\
& \text {. } h_{8}=h_{7}=107.32 \mathrm{~kg} / \mathrm{kg}
\end{aligned}
$$

Energy bola ce on heat excluager between the two cycles :

$$
\begin{aligned}
& \dot{m}_{\text {upper }}\left(h_{5}-h_{8}\right)=\dot{m}_{\text {govern }}\left(h_{22}-h_{3}\right) \\
\Rightarrow & \dot{m}_{\text {enow er }}=\dot{m}_{\text {upper }} \frac{h_{5}-h_{8}}{h_{2 a}-h_{3}}=1 \times \frac{255.55-107.32}{271.17-73.33}=0.74924 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

$\Rightarrow \dot{Q}_{L}=\dot{m}_{\text {lower }}\left(h_{1}-h_{4}\right)=0.74924 \times(234.44-73.33)=120.71 \mathrm{kw}$
d)

$$
\begin{aligned}
\dot{\omega}_{c o p} & =\dot{\omega}_{\omega-p_{1}}+\dot{\omega}_{w-p_{2}} \\
& =\dot{m}_{\text {lower }}\left(h_{2 a}-h_{1}\right)+\dot{m}_{\text {upper }}\left(h_{6 a}-h_{5}\right) \\
& =0.74924(271.17-234.44)+1 \times(276.69-255.55) \\
& =48.66 \mathrm{kw}
\end{aligned}
$$

e) $\operatorname{cop}=\frac{\dot{Q}_{L}}{\dot{\omega}_{\text {Cop, }}}=\frac{120.71}{48.66}=2.48$

